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Abstract

Every SQL statement is limited to return a single, possibly denor-
malized table. This approximately 50-year-old design decision has
far-reaching consequences. The most apparent problem is the re-
dundancy introduced through denormalization, which can result
in long transfer times of query results and high memory usage for
materializing intermediate results. Additionally, regardless of their
goals, users are forced to fit query computations into one single
result, mixing the data retrieval and transformation aspect of SQL.
Moreover, both problems violate the principles and core ideas of
normal forms.

In this paper, we argue for eliminating the single-table limitation
of SQL. We extend SQL’s SELECT clause by the keyword ‘RESULTDB’
to support returning a result subdatabase. Our extension has clear
semantics, i.e., by annotating any existing SQL statement with the
RESULTDB keyword, the DBMS returns the tables participating in
the query, each restricted to the relevant tuples that occur in the
traditional single-table query result. Thus, we do not denormalize
the query result in any way. Our approach has significant, far-
reaching consequences, impacting the querying of hierarchical data,
materialized views, and distributed databases, while maintaining
backward compatibility. In addition, our proposal paves the way
for a long list of exciting future research opportunities.

We propose multiple algorithms to integrate our feature into
both closed-source and open-source database systems. For closed-
source systems, we provide several SQL-based rewrite methods. In
addition, we present an efficient algorithm for cyclic and acyclic
join graphs that we integrated into an open-source database system.

We conduct a comprehensive experimental study. Our results
show that returning multiple individual result sets can significantly
decrease the result set size. Furthermore, our rewrite methods and
algorithm introduce minimal overhead and can even outperform
single-table execution in certain cases.

CCS Concepts

• Information systems → Structured Query Language; Query
optimization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD 2025, June 22–27, 2025, Berlin, Germany

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

Keywords

SQL, extension, denormalization, subdatabase, query processing,
query optimization
ACM Reference Format:

Joris Nix and Jens Dittrich. 2025. Extending SQL to Return a Subdatabase.
In Proceedings of (SIGMOD 2025). ACM, New York, NY, USA, 15 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

With the invention of the relational model by E. F. Codd [12], data-
base normalization was already identified as a key principle in
database design. In that seminal paper, Codd introduced the first
normal form with the aim of enabling the development of a “uni-
versal data sublanguage”. In his follow-up work [13], Codd went on
to define the second and third normal form. These normal forms
were designed to reduce data redundancies by eliminating unde-
sirable dependencies between relations, improve maintenance and
consistency of the data, enhance the extensibility of databases, and
make the relational model more informative to users. Moreover, the
logical database schema serves as the common interface for both
applications and database developers. Therefore, carefully design-
ing the logical database schema is crucial when creating a database.
However, queries involving multiple relations often inherently and
inevitably denormalize the underlying data when producing the re-
sult set, which contradicts the core principles of normal forms. This
implies that significant effort is invested in normalizing data within
the database system, yet the normalized state is often neglected
once the data is queried using SQL. This occurs, for instance, when
passing data to users or creating materialized views.

1.1 Problem Statement

Consider the SQL query in Listing 1. Figure 1 depicts the corre-
sponding database tables with sample data and Figure 2 shows the
query result.

Listing 1: SQL statement.

1 SELECT c.name , p.name , p.category
2 FROM customers AS c, order AS o, products AS p
3 WHERE c.state = 'NY' AND
4 c.id = o.cid AND
5 p.id = o.pid

When restricted to a single-table query output, computing the
relational result shown in Figure 2 has two notable problems.

Problem 1: Relational information redundancy. The result table
contains redundancies, with customer names and product informa-
tion appearing multiple times due to denormalization caused by the
underlying join operation. These data values are not only displayed
multiple times but are also physically duplicated. In general, the
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customers

id name state

0 custA NY
1 custB CA
2 custC NY

order

cid pid

0 1
1 1
2 2
2 1
0 2
1 3

products

id name category

0 smartphone electronics
1 laptop electronics
2 shirt clothing
3 pants clothing

Figure 1: Database tables with sample data. The gray rows

indicate the tuples contributing to the result set in Figure 2.

customers ⊲⊳ order ⊲⊳ products

c.name p.name p.category

custA laptop electronics
custA shirt clothing
custC laptop electronics
custC shirt clothing

Figure 2: Relational result table. The colors represent at-

tribute values of database entities (tuples) that get duplicated

in the result of the query depicted in Listing 1.

larger the result table, the greater the effort to transmit or store
these result sets. This is particularly problematic for queries that
produce large result sets, as it can lead to significant memory con-
sumption during query processing when these redundancies have
to be materialized at some point in the physical execution plan.

Problem 2: Relational information loss. In addition, relational in-
formation indicating that duplicated values originate from the same
tuple is lost. For instance, there could be two customers named custA,
and distinguishing between them in the result table would require
projecting their primary keys. Another issue with the result table
is that the concept of a “key” is simply abandoned when processing
data in SQL or relational algebra. For instance, in Figure 2, the com-
bination of the customer and product name uniquely identifies each
record. However, this information is not evident from the result set
alone. SQL discards even more information from the underlying
relations: where did a specific attribute in the result table originate
from? Does that attribute value correspond to an attribute in one
of the base relations, or was it computed? These are central ques-
tions in the area of “data provenance” and emphasize that both SQL
and relational algebra are not primarily data retrieval languages
but rather data transformation languages. Both languages take a
set of base relations as their input and transform them into a sin-

gle output relation. However, considerable information regarding
the relationship among the schema, keys, and data from the base
relations is lost in the process.

Therefore, in this work, we argue that it is much more natural
to return individual, reduced tables, i.e., a subdatabase, instead of a
potentially denormalized result.

Definition 1.1 (Result Subdatabase). Let 𝑄 be an arbitrary select-
project-join query over a set of relations 𝑅 = {𝑅1, . . . , 𝑅𝑛} that
projects to a set of attributes 𝐴 = 𝐴1 ∪ · · · ∪𝐴𝑚 where each 𝐴𝑖 is a

electronics

id pid storage

0 0 64 GB
1 0 32 GB
2 1 128 GB

products

id name price

0 smartphone 900
1 laptop 3500
2 shirt 40
3 pants 120

clothing

id pid size

0 2 L
1 3 XS
2 3 M

Figure 3: Database tables showing electronics and clothing as

subtypes of products. The pid in both subtypes is a foreign

key to the supertype.

subset of the attributes of relation 𝑅𝑖 and𝑚 ≤ 𝑛. Let𝑇 be the single
table result of 𝑄 over 𝑅. A result subdatabase is defined as:

𝑄subdatabase := {𝜋𝐴1 (𝑇 ), . . . , 𝜋𝐴𝑚
(𝑇 )}

In other words, instead of returning a single table, we return
the set of tables whose attributes are part of the projection of the
original query, each containing only the tuples that contribute to
the overall query result. This concept has a wide range of use cases
where it enhances declarative simplicity and may even improve
query performance, a selection of which are discussed in the fol-
lowing.

1.2 Use Cases

1. Hierarchical Data. Consider the database tables shown in Fig-
ure 3, which shows a different way of modeling the products table.
Instead of having the category as an attribute as shown in Fig-
ure 1, the products table is divided into multiple subtypes, each
representing a specific category and containing category-specific
information. Let’s assume we are interested in all electronic and
clothing products priced under 1000 Euros. Listing 2 shows the
corresponding query.

Listing 2: Querying hierarchical data.

1 SELECT e.*, c.*
2 FROM products AS p
3 LEFT OUTER JOIN electronics AS e ON p.id = e.pid
4 LEFT OUTER JOIN clothing AS c ON p.id = c.pid
5 WHERE p.price < 1000;

Note that, we cannot use UNION to compute the desired result due
to the different schemas of electronics and clothing. Furthermore,
since we must merge the relevant tuples from both subtypes into
a single output relation, we are forced to use OUTER JOINs, which
introduce NULL values as padding. However, with the RESULTDB
extension, we can compute the same result split into multiple indi-
vidual output relations, allowing us to eliminate the undesired and
redundant NULL values. This use case applies more broadly to any
scenario in which we need to retrieve data from multiple distinct
relations that lack a direct relationship.

2. Views. Materialized views (MVs) are a powerful concept in
database management systems, commonly used to precompute
specific results and enhance query performance. However, MVs
come with drawbacks, the most significant being storage overhead.
Materializing query results as views requires physically replicating
part of the underlying data, leading to additional storage costs. This
issue is exacerbated by the fact that MVs often contain redundancies
introduced by data denormalization through joins.
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Therefore, applying the idea of materializing only the individual
result sets – using the RESULTDB keyword to create the view – of-
fers significant advantages by greatly reducing storage overhead,
primarily by eliminating duplicated data. For example, assume we
want to create a materialized view for the query given in Listing 1.
Instead of materializing the single-table join result with redundan-
cies, as shown in Figure 2, RESULTDB would only materialize the
underlying database entities contributing to the query result, as
illustrated in gray in Figure 1. Depending on the amount of redun-
dancy in the data, this approach has the potential to considerably
reduce storage overhead. The idea of storing only these filtered
relations can also be naturally applied to data provenance, particu-
larly in the context of view lineage [14]. In that work, the authors
propose several algorithms to reconstruct those tuples for a given
data item that produce a materialized (aggregation) view. These
computed sets of source data items essentially map one-to-one to
our reduced base table views and can be used by the proposed
algorithms to trace the lineage of data items.

The issue with only storing the filtered base relations is that
a post-join might be required, i.e., we might have to join the in-
dividual tables again. However, this should not be viewed as a
disadvantage but rather as an opportunity. On the one hand, if the
materialized view contains a high amount of redundancy and the
cost of executing the post-join is relatively low, it can be beneficial to
send the individual result sets to the client and execute the post-join
there, thereby reducing transfer overhead. On the other hand, with-
out fully materializing the join result, we can apply filters and create
index structures directly on the filtered base table views, which can
be much more efficient than doing so on potentially large material-
ized views. Furthermore, our experiments (Section 6.4) show that
the post-join overhead is in general extremely small.

Another advantage of computing a result subdatabase is that it
allows users to conveniently define a completely customized view
across multiple tables. With traditional SQL, users are limited to
either defining a view for each table individually or combining data
from different tables into a single table. Computing a subdatabase
can be particularly useful, for instance, when defining a view re-
lated to logical data independence or access control. In addition, it is
much more convenient to redefine the view if the requirements or
specifications change.

3. Distributed Database Systems. In a distributed setting, it is
often advantageous to process as much data as possible locally on
a single node. Once processed, the results may need to be sent to
another node for further computation, which can lead to significant
data transfer overhead. Therefore, computing a result subdatabase
locally – rather than a single-table result – can minimize the amount
of data that needs to be transmitted, thereby reducing transfer
time and potentially decreasing the overall computation time. This
concept is similar to the general idea of semi-join reductions in
distributed settings [6], which can be seen as a subset of computing
a result subdatabase but also applies to broader contexts, such as
shipping the result of a query to an application server. In general,
any scenario that involves transferring data over a potentially slow
network can benefit from producing individual result sets. Naturally,
we must consider the trade-off between reducing transfer costs and
executing the post-join.

Overall, there are numerous use cases that could benefit from
computing multiple individual result sets. The advantages are exten-
sive, including smaller (intermediate) result sets, a more intuitive
experience for users, and new opportunities for query optimization.

1.3 Contributions

We extend SQL to allow it to return a result subdatabase, i.e., only
the tuples from those relations that are required to compute the
query result. In summary, our contributions are as follows:
(1) We introduce a backward-compatible SQL extension, SELECT

RESULTDB, which enables SELECT statements in SQL to return
a clearly defined subset of a database rather than just a single
table. Although the introduction of this new keyword does not
extend the expressive power of SQL, it fundamentally alters
the underlying semantics of the computed result set. Note that,
this work focuses on the data retrieval aspect and is therefore
limited to select-project-join (SPJ) queries. However, we plan to
address data transformation such as grouping and more com-
plex operations such as set difference or anti-joins in future
work. (Section 2)

(2) We propose four rewrite algorithms that enable any SQL-92-
compliant closed-source database system to support our exten-
sion. (Section 3)

(3) We present an efficient native algorithm, that enables query
optimizers to compute the result subdatabase efficiently di-
rectly inside a database system. We implement our algorithm
in mutable [21], an open-source main memory DBMS featuring
a state-of-the-art compiling query execution engine. (Section 4)

(4) We conduct an extensive experimental study comparing tra-
ditional single-table query processing with our proposed ap-
proaches. We evaluate both our rewrite methods and the in-
tegration of our algorithm directly into a DBMS. Our results
show that multiple individual result sets significantly reduce
size, with our methods adding minimal overhead and, in some
cases, even outperforming single-table execution. (Section 6)

2 Querying a Database to Return a Subdatabase

We propose to change SQL and relational algebra to return a sub-

database. That subdatabase is well-defined: for each relation in a
query that is part of the final projection, we return the tuples that
contribute to the query result.

2.1 Preliminaries

Let R be set of all relations and let Q be the set of all select-project-
join queries that project to a set of attributes from its input relations.

Definition 2.1 (A Query Returning a Relation). Let 𝑄 ∈ Q be a
query. We define the evaluation of 𝑄 and its input relations 𝑅 ⊆ R
that produces a single-table (ST) result as follows:

𝑄ST : Q × 2R → R, (𝑄, 𝑅) ↦→ 𝑇

Here, 𝑇 is a relation with the schema from 𝑄 ’s final projection.

2.2 A Query Returning a Subdatabase

Definition 2.2 (A Query Returning a Subdatabase). Let 𝑄 ∈ Q be
a query over a set of input relations 𝑅 = {𝑅1, . . . , 𝑅𝑛} ⊆ R that
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projects to a set of attributes 𝐴 = 𝐴1 ∪ · · · ∪𝐴𝑛 where each 𝐴𝑖 is
a subset of the attributes of relation 𝑅𝑖 . We define the evaluation
of 𝑄 and its input relations 𝑅 ⊆ R that produces a subdatabase as
follows:

𝑄RDB : Q × 2R → 2R , (𝑄, 𝑅) ↦→ 𝐷𝐵,where
𝐷𝐵 := {𝑅′𝑖

�� 𝑅𝑖 ∈ 𝑅 ∧𝐴𝑖 ≠ ∅}, with 𝑅′𝑖 := 𝜋𝐴𝑖

(
𝑄ST (𝑄, 𝑅)

)
In other words, 𝑄RDB returns a subdatabase. This subdatabase

contains a set of relations 𝑅′𝑖 ⊆ 𝑅𝑖 , where each relation is part of
the projections in 𝑄 . The subset 𝑅′𝑖 is defined as the result of the
single-table execution of 𝑄 , projected to the attributes 𝐴𝑖 .

To avoid confusion, the prefix ‘sub’ in subdatabase refers to
the fact that (1.) 𝑄DB returns a subset of the input relations, and
(2.) those relations contain a subset of the tuples from the input
relations 𝑅. Notice that we assume set semantics of relation algebra,
i.e., 𝜋 returns a duplicate-free set. However, extending this to bag
semantics is straightforward: our definitions remain unchanged,
with the sole adjustment being that the projection operation must
preserve duplicates.

2.3 Relationship-Preserving Subdatabase

Definition 2.3 (Relationship-Preserving Subdatabase). Let 𝑄 ∈ Q
be a query over a set of input relations 𝑅 = {𝑅1, . . . , 𝑅𝑛} ⊆ R that
projects to a set of attributes 𝐴 = 𝐴1 ∪ · · · ∪ 𝐴𝑛 where each 𝐴𝑖

is a subset of the attributes of relation 𝑅𝑖 . Let 𝐴𝐽
𝑖 be the subset of

attributes of relation 𝑅𝑖 that are part of the join predicates in 𝑄 . We
then define 𝐴′

𝑖 := 𝐴𝑖 ∪ 𝐴
𝐽
𝑖 and the evaluation of 𝑄 and its input

relations 𝑅 ⊆ R that produces a relationship-preserving subdatabase

as follows:

𝑄RDB𝑅𝑃
: Q × 2R → 2R , (𝑄, 𝑅) ↦→ 𝐷𝐵,where

𝐷𝐵 := {𝑅′𝑖
�� 𝑅𝑖 ∈ 𝑅 ∧𝐴′

𝑖 ≠ ∅}, with 𝑅′𝑖 := 𝜋𝐴′
𝑖

(
𝑄ST (𝑄, 𝑅)

)
In other words, we extend the set of projected attributes 𝐴𝑖 by

the attributes 𝐴𝐽
𝑖 required to compute the joins of 𝑄 . In particu-

lar, we require a relationship-preserving subdatabase to be able to
obtain the original single-table result again. Specifically, we can
reconstruct the original single-table result by computing 𝑄ST on
the reduced database 𝑄RDB𝑅𝑃

(𝑄, 𝑅):

𝑄ST (𝑄, 𝑅) = 𝑄ST
(
𝑄,𝑄RDB𝑅𝑃

(𝑄, 𝑅)
)
.

Note that in some cases it is only necessary to consider a subset
of the join predicates to recompute the single-table result, e.g., if a
join does not contribute to the reconstruction of the original result.

2.4 Extending SQL: SELECT RESULTDB
Given a read-only query 𝑄 ∈ Q over a set of input relations 𝑅 =

{𝑅1, . . . , 𝑅𝑛} ⊆ R. We propose to extend the SELECT clause of 𝑄 to

SELECT RESULTDB

This statement will return 𝑄RDB (𝑄, 𝑅) as defined in Definition 2.2.
In order to compute the post-join, i.e., to recompute the original
single-table result again, we have to return𝑄RDB𝑅𝑃

(𝑄, 𝑅) as defined
in Definition 2.3. Furthermore, SELECT RESULTDB does not require
full materialization of the returned relations. Results can be returned
through pipelines, akin to standard single-table query processing,

with each relation mapping to an iterator (or cursor) that uses a
pull- or push-based streaming interface.

3 SQL-based Rewrite Methods

In this section, we discuss four SQL-based rewrite methods (RMs)
that allow us to implement the query semantics introduced in Sec-
tion 2. Our rewrite methods can be classified along two dimensions,
as depicted in Figure 4.

Dimension 1: SQL semi-join strategy. SQL does not provide a key-
word for semi-joins. Hence, we have to write semi-joins implicitly,
either through an inner join followed by a SELECT DISTINCT on a
single relation or through a subquery using the IN keyword. Seman-
tically, both rewrites express the same query and return the same
result set. Unfortunately, the two rewrites may yield very different
plans in many database systems (breaking the strict separation of
SQL’s declarativeness from query optimization).

Dimension 2: Materialization strategy. Instead of dynamically

computing join results for the semi-join strategies, we can prema-

terialize or cache data. For example, using MVs we can precompute
the entire query result or relevant portions, achieving a trade-off
between pre-materialization effort and query processing time.

SELECT DISTINCT Subquery
Dynamic RM 1 RM 3

Materialized RM 2 RM 4

Figure 4: SQL semi-join ×materialization landscape.

In the following, we first present the intuition behind each RM,
followed by a formal definition using relational algebra. Let 𝑄 ∈ Q
over the input relations 𝑅 = {𝑅1, . . . , 𝑅𝑛} ⊆ R be defined as:

𝑄 := 𝜋𝐴

(
𝜎𝐽

(
𝜎𝐹 (𝑅×)

) )
,

with 𝐴 = 𝐴1 ∪ · · · ∪𝐴𝑛 , where each 𝐴𝑖 is a subset of the attributes
of the relation 𝑅𝑖 , 𝐽 = 𝐽1 ∧ · · · ∧ 𝐽𝑛 where each 𝐽𝑖 is the set of join
predicates of 𝑅𝑖 , 𝐹 = 𝐹1 ∧ · · · ∧ 𝐹𝑛 where each 𝐹𝑖 is the set of filter
predicates of 𝑅𝑖 , and 𝑅× = 𝑅1 × · · · ×𝑅𝑛 is the Cartesian product of
all relations in 𝑅. Furthermore, we illustrate the application of each
rewrite method using the query shown in Listing 1.

3.1 RM 1: Dynamic SELECT DISTINCT
The first rewrite method transforms a single query into multiple
queries where each query projects to the unique attributes of exactly
one relation that participates in the query output. Formally, RM 1
rewrites 𝑄 into multiple 𝑄𝑖 := 𝜋𝐴𝑖

(𝜎𝐽 (𝜎𝐹 (𝑅×))), ∀𝑖 where 𝐴𝑖 ≠ ∅.
Listing 3 provides an example.

Listing 3: RM using multiple SELECT DISTINCTs.
1 BEGIN TRANSACTION;
2 SELECT DISTINCT c.name -- Rest of Listing 1
3 SELECT DISTINCT p.name , p.category -- Rest of Listing 1
4 COMMIT;

We use the DISTINCT keyword to prevent any duplicated entities
due to the join and wrap the queries into a transaction to guarantee
correct results w.r.t. the current committed state of the database.
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While RM 1 is relatively straightforward, the primary disadvan-
tage is that it executes the same queries with slightly different
SELECT clauses multiple times, including potentially costly joins.

3.2 RM 2: Materialized SELECT DISTINCT
To proactively circumvent that a potentially expensive join is exe-
cuted multiple times, RM 2 makes use of MVs. In this RM, we first
explicitly create a (temporary and unmaintained) MV once. This
represents a snapshot as of the time the MV is created. Second, we
execute the individual queries against that MV and third, we drop
the MV. Formally, RM 2 first creates 𝑄MV := 𝑄 and then creates
multiple 𝑄𝑖 := 𝜋𝐴𝑖

(𝑄MV), ∀𝑖 where 𝐴𝑖 ≠ ∅. Listing 4 provides an
example.

Listing 4: RM using a MV.

1 CREATE MATERIALIZED VIEW MV AS
2 SELECT * -- Rest of Listing 1.
3
4 SELECT DISTINCT c.name FROM MV;
5 SELECT DISTINCT p.name , p.category FROM MV;

RM 2 has the advantage that it avoids the repeated computation
of the same query. However, the disadvantage is that we need to
materialize a potentially large query result within the DBMS, which
can be particularly costly in a disk-based system. Overall, RM 2
trades upfront costs for materializing the join result versus repeated
cost for the computation of the join result.

3.3 RM 3: Dynamic Subquery

The third rewrite method tries to steer the query optimizer into
using semi-joins internally by providing a hint using subquery
syntax. Formally, RM 3 rewrites 𝑄 into multiple 𝑄𝑖 using semi-
joins, ∀𝑖 where 𝐴𝑖 ≠ ∅ as follows:

𝑄𝑖 := 𝜋𝐴𝑖

(
𝜎𝐽

(
𝜎𝐹 (𝑅×)

) )
1.
= 𝜋𝐴𝑖

(
𝜎𝐹𝑖 (𝑅𝑖 ) ⊲⊳𝐽𝑖

(
𝜎𝐽 \𝐽𝑖

(
𝜎𝐹\𝐹𝑖 (𝑅

× \ 𝑅𝑖 )
) ))

2.
= 𝜋𝐴𝑖

(
𝜎𝐹𝑖 (𝑅𝑖 ) ⋉𝐽𝑖

(
𝜎𝐽 \𝐽𝑖

(
𝜎𝐹\𝐹𝑖 (𝑅

× \ 𝑅𝑖 )
) ))

Transformation step 1. explicitly performs the join between 𝑅𝑖
and the rest of the relations 𝑅 \ 𝑅𝑖 . In transformation step 2., the
application of the left semi-join is equivalent to the join as we
only project to the attributes of 𝑅𝑖 anyway. Listing 5 provides an
example.

Listing 5: RM using dynamic subqueries.

1 BEGIN TRANSACTION;
2 SELECT DISTINCT c.name -- Query 1
3 FROM customers AS c
4 WHERE c.state = 'NY' AND c.id IN -- c.id = o.cid
5 (SELECT o.cid FROM order AS o, products AS p
6 WHERE o.pid = p.id);
7 -- Query 2: Analogous for 'products '
8 COMMIT;

Note that the subquery does not necessarily have to contain all
other relations but only those required to compute the relevant
primary key values, which depends on the specific join graph.

With this rewrite, the query optimizer of a database system
like PostgreSQL can efficiently execute a semi-join in certain cases
without materializing a potentially large join result. However, the

effectiveness of the query optimizer in utilizing a semi-join operator
depends on various factors and may not always be guaranteed.

3.4 RM 4: Materialized Subquery

The fourth rewrite method essentially materializes a join index,
i.e., for all participating relations, it only projects to their primary
keys. Formally, RM 4 first creates 𝑄MV := 𝜋𝐴PK (𝜎𝐽 (𝜎𝐹 (𝑅×))), with
𝐴PK = {𝐴PK

𝑖 | 1 ≤ 𝑖 ≤ 𝑛 ∧ 𝐴𝑖 ≠ ∅}, where each 𝐴PK
𝑖 is the set

of primary key attributes of 𝑅𝑖 . Afterward, RM 4 creates multiple
𝑄𝑖 := 𝜋𝐴𝑖

(𝑅𝑖 ⋉𝐽 PK
𝑖

𝑄MV), ∀𝑖 where 𝐴𝑖 ≠ ∅. 𝐽PK
𝑖 denotes the join on

the primary key attributes. Listing 6 provides an example.

Listing 6: RM using a MV and multiple subqueries.

1 CREATE MATERIALIZED VIEW MV AS
2 SELECT DISTINCT c.id, p.id -- Rest of Listing 1.
3
4 SELECT DISTINCT c.name -- Query 1
5 FROM customers AS c
6 WHERE c.id IN (SELECT c.id from MV);
7 -- Query 2: Analogous for 'products '

RM 4’s rationale is that it typically requires significantly less storage
than RM 2 and has the potential to leverage semi-joins internally.

4 ResultDBsemi-join Algorithm

In this section, we present an algorithm that can be integrated
into a DBMS to efficiently compute SELECT RESULTDB queries. Our
algorithm allows us to fully reduce all relations of a join graph
with an arbitrary topology. For this, we first discuss how we can
leverage Yannakakis’ algorithm for acyclic join graph topologies
in Section 4.2. Next, in Section 4.3, we show how to transform cyclic
queries into acyclic ones to reuse the algorithm from Section 4.2.
Finally, we present our complete algorithm in Section 4.4.

4.1 Preliminaries

The core idea is to efficiently reduce each individual relation to the
minimal set of tuples that participate in the result set as defined
in Definition 2.2. For this, we are going to make use of semi-joins.
The (left) semi-join between two relations R and S is defined as
R ⋉ S = 𝜋[R] (R ⊲⊳ S). Similar to previous work [5, 12], we use
the term semi-join reduction or just reduction when performing a
semi-join. In particular, we say “R is reduced by S” if we perform
R ⋉ S. Depending on the context, a semi-join reduction can also
refer to the reduction of every relation that is part of a query.

As already shown in previous work [5], the shape of the join
graph is an essential factor for computing a semi-join reduction. A
join graph for some query 𝑄 is defined as 𝐽𝐺𝑄 = (𝑅, 𝐽 ), where 𝑅

is the set of relations and 𝐽 is the set of joins in 𝑄 . We will always
assume a connected join graph. In the following, we look separately
at both acyclic and cyclic join graph topologies and discuss how we
can algorithmically compute our result subdatabases.

Notion of Acyclicity. Note that acyclicity can be defined in various
ways, with one common definition being 𝛼-acyclicity. Intuitively,
it can be defined as follows (see Definition 18.2 of Arenas et al. [4]
for a more formal definition):

Definition 4.1 (𝛼-acyclicity). A query 𝑄 is acyclic iff there exists
an equivalent query 𝑄 ’ whose join graph 𝐽𝐺𝑄 ′ is a tree.
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1. S′ = S ⋉ R 2. S′′ = S′ ⋉ T
3. U′ = U ⋉ S′′ 4. S′′′ = S′′ ⋉ U′

5. R′ = R ⋉ S′′′

6. T′ = T ⋉ S′′′

Figure 5: Visualization of a possible semi-join order with U

as root.→ shows the bottom-up and→ the top-down pass.

However, in the scope of this work, we will use a simpler defini-
tion solely based on the structure of the join graph:

Definition 4.2 (JG-acyclicity). A query 𝑄 is acyclic iff its join
graph 𝐽𝐺𝑄 is acyclic.

The problem with these different notions of acyclicity is that a
query may be 𝛼-acyclic but not JG-acyclic. In this work, we decided
to use JG-acyclicity due to the following two reasons. First, checking
for JG-acyclicity can be done very efficiently. A join graph is cyclic
iff the number of joins is equal to or greater than the number of
relations. In contrast, checking for 𝛼-acyclicity requires for example
the application of the GYO algorithm (see Proposition 18.6 of Arenas
et al. [4]), which is computationally more expensive. Second, under
𝛼-acyclicity, there can be multiple tree-shaped queries 𝑄’ for a
given query 𝑄 . Deciding which 𝑄’ to consider for our algorithm
basically represents another enumeration problem.

This presents a trade-off: identifying and constructing acyclic
queries under 𝛼-acyclicity is computationally more expensive but
may save the effort required to transform a cyclic query into an
acyclic one (cf. Section 4.3). For the remainder of this paper, we
use (a)cyclicity to refer specifically to JG-(a)cyclicity. However,
exploring 𝛼-acyclicity will be considered in future work.

4.2 Acyclic Join Graph Topology

The Yannakakis algorithm [40] provides an efficient way for solv-
ing acyclic (tree) conjunctive queries, i.e., select-project-join (SPJ)
queries that have an acyclic join graph. The algorithm essentially
works in three main steps. After choosing an arbitrary root node,
we first perform consecutive semi-joins bottom-up from the leaves

to the root. Second, we perform consecutive semi-joins top-down
from the root to the leaves. Lastly, the Yannakakis algorithm joins
the reduced relations to obtain a single output relation. The main
motivation of this algorithm is to keep intermediate results as small
as possible by reducing all relevant relations to their minimal set
of tuples that participate in the join before actually joining the
relations. Algorithm 1 shows the high level steps of this algorithm.

Algorithm 1 Yannakakis’ Algorithm.
(0) Choose an arbitrary node in the join graph as root.
(1) Perform bottom-up semi-joins from leaves to root.
(2) Perform top-down semi-joins from root to leaves.
(3) Compute join result.

Figure 5 shows an acyclic join graph consisting of four relations
and visualizes one possible semi-join order. In this example, we select

U as the root and then compute a breadth-first search order for
the edges starting at U. The reversed order now gives us a suitable
sequence for the bottom-up semi-joins while we perform the top-
down semi-joins in the original order. The semi-joins are performed
in the direction of the arrows, i.e., an arrow from R to S represents
the semi-join S ⋉ R. Note, that for a specific node with multiple
children, the order in which the semi-joins are applied does not
matter for correctness but might have an impact on performance.

Algorithm 2 Reduce relations of a join graph using Yannakakis’ algorithm.
1: function reduce_relations(𝐺 ) ⊲𝐺 is an acyclic join graph

2: root = choose_node(𝐺 ) ⊲ (0) root node

3: edges_bfs_order = bfs_edges(𝐺 , root)
4: for join ∈ reversed(edges_bfs_order) do ⊲ (1) bottom-up

5: semi_join(join.left, join.right)
6: for join ∈ edges_bfs_order do ⊲ (2) top-down

7: semi_join(join.right, join.left)
8: return 𝐺 ⊲𝐺 contains reduced relations

Algorithm 2 shows pseudocode for the computation of our re-
sult subdatabase based on the fundamental steps in Algorithm 1.
In line 2, we choose a root node of our tree-structured join
graph (step 0). Instead of randomly selecting a root node, we em-
ploy a heuristic that favors relations included in the projections,
prioritizing those with higher degrees when multiple such relations
exist. This heuristic is based on two key reasons. First, since we
only need to reduce relations that we eventually return, choosing a
relation in the projections as root can reduce the number of semi-
joins needed in the top-down pass. Second, choosing high-degree
nodes typically leads to shallower trees, allowing us to perform
subsequent semi-joins more effectively. The selection of the root
node, which we refer to as the Root Node Enumeration Problem,
can have a substantial impact on performance. In line 3, we order
the edges of the join graph in a breadth-first-search order starting
at the root node. Additionally, we assume the join operands are
ordered relative to the root node, meaning there are directed edges
from the root to the leaves. This is crucial because the semi-join
operation is not commutative, and we must ensure that semi-joins
are executed in the correct direction. In lines 4-5, we perform the
bottom-up semi-joins (step 1), and in lines 6-7, we perform the top-
down semi-joins (step 2). In contrast to Yannakakis’ algorithm, we
no longer need to execute step 3, as the reduced relations already
form our desired result database.

The most obvious reason Yannakakis’ algorithm is not used in
traditional query processing is the uncertainty about whether the
overhead of semi-join reduction outweighs the benefits of smaller
subsequent join results. However, we need not worry about this
since we focus solely on the reduced relations, allowing us to fully
leverage the efficiency of Yannakakis’ algorithm.

4.3 Cyclic Join Graph Topology

Yannakakis’ algorithm is explicitly only defined for acyclic con-
junctive queries. Furthermore, Bernstein et al. [5] show that for
cyclic queries, semi-joins either cannot be used to fully reduce the
relations or we need a very long sequence of semi-joins. “Fully
reduced” refers to a relation where only the minimal set of tuples
needed for the final join result remains. In Figure 5 for example,
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Figure 6: Transformation of a cyclic join graph into an acyclic

one by folding vertices.

after performing the first semi-join S ⋉ R, the relation S is only
partially reduced. Once S is reduced by all neighboring relations,
i.e., after the fourth semi-join, it cannot be further reduced anymore.
In order to leverage Yannakakis’ algorithm, we need to “transform”
cyclic queries into tree queries. There is already some work on
transforming graphs into a tree structure called tree decomposi-

tions [34]. We discuss this line of work in more detail in the related
work Section 5. However, we decided to employ a more pragmatic
and accessible way to get rid of cycles in a join graph.

Algorithm 3 Transform cyclic join graph into acyclic one.
1: function fold_join_graph(𝐺 )
2: while𝐺 .is_cyclic() do ⊲ #joins >= #relations

3: 𝑥 = choose_node(𝐺 )
4: 𝑦 = choose_neighbor(𝐺 , 𝑥 )
5: 𝐺 .replace(𝑥 , 𝑦, 𝑥 ⊲⊳ 𝑦) ⊲ fold 𝑥 and 𝑦; adjust affected joins

6: return 𝐺 ⊲ acyclic join graph

The general idea is to fold relations together such that the cycles
in the join graph are resolved. Algorithm 3 shows pseudocode for
the construction of an acyclic join graph. At the core, the algorithm
consists of two steps. First, we choose a (random) node 𝑥 in the
join graph and one of its neighbors 𝑦 (lines 3-4). Second, we replace
those two nodes 𝑥 and 𝑦 with their join result and adjust other
affected joins accordingly (line 5). We repeat these steps until our
join graph is acyclic (line 2). Since our join graph is undirected and
connected, we can easily check for cycles by comparing the number
of joins to the number of relations. If the number of joins is equal
to or greater than the number of relations, the join graph is cyclic.

Figure 6 shows an example transformation of a cyclic join graph
into an acyclic one by folding multiple vertices. Our initial join
graph (JG 1) has multiple cycles (e.g. R–S–U–T–R or R–S–T–R).
In the first step, we choose the nodes T and U and replace them
in the join graph with their join result T ⊲⊳ U. Note that we now
have a conjunctive join predicate between S and T ⊲⊳ U which
is visualized by having multiple edges in their respective color
between two nodes. After this transformation, we still have a cyclic
join graph (JG 2). Therefore, we repeat the process and join the
nodes R and S. The final join graph (JG 3) consists of two nodes
connected by a single join containing three join predicates.

Note, that this is just one possible outcome because we did not
specify how to choose either node 𝑥 or 𝑦 in Algorithm 3. Choosing
nodes S and T initially would have yielded an acyclic join graph
already after folding the first two nodes. The choice of folds is
very likely to have a significant impact on the performance of the

algorithm. This opens up a whole new optimization problem that we
coin the Tree Folding Enumeration Problem. Exploring this problem
goes beyond the scope of this paper, and we will investigate it as
part of future work. However, instead of just randomly picking the
two nodes 𝑥 and 𝑦, our implementation heuristically chooses the
nodes with the highest degree. The rationale for this is that nodes
with many join partners are more likely to be part of a cycle and
with that, we might need fewer folds to reach an acyclic state.

Lemma 4.3. The folding process does not alter the join result and

eventually results in an acyclic join graph.

Proof. Let 𝑄 ∈ Q be a cyclic query and 𝐽𝐺𝑄 = (𝑅, 𝐽 ) be the
corresponding connected join graph, where 𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑛} is
the set of relations and 𝐽 is the set of joins in𝑄 . Joining two arbitrary
but connected relations 𝑅𝑖 and 𝑅 𝑗 and replacing them with the join
𝑅𝑖 ⊲⊳ 𝑅 𝑗 = 𝑅𝑖 𝑗 in 𝑄 does not change the overall join result. This
follows directly from the associativity of the join operation.

A connected, undirected join graph is acyclic iff the number of
joins |𝐽 | is equal to the number of relations |𝑅 | minus 1, i.e., |𝐽 | =
|𝑅 | −1. Each folding step reduces the number of relations in the join
graph by exactly one by merging two nodes. However, folding two
nodes reduces the number of joins in the join graph by at least one,
depending on the structure of the query graph and the relations to
be joined. Therefore, we can successively join two relations until
the number of joins is less than the number of relations in the folded
join graph. In the worst case, we apply the folding steps until we
are left with exactly two nodes and one edge, which by definition
is acyclic. From this, it follows that the folding process eventually
results in an acyclic join graph. □

4.4 Putting It All Together

With the transformation of cyclic queries into acyclic queries com-
plete, we can now present our final ResultDBsemi-join Algorithm 4.

Algorithm 4 SELECT RESULTDB on arbitrary join graph topologies.
1: function ResultDBsemi-join(𝐺 )
2: if 𝐺 .is_cyclic() then
3: 𝐺 = 𝐺 .fold_join_graph(𝐺 ) ⊲ transform into acyclic JG

4: 𝐺 = reduce_relations(𝐺 ) ⊲ use Yannakakis’ algorithm

5: for 𝑟 ∈ 𝐺.relations do
6: if 𝑟 .is_fold() then ⊲ 𝑟 could be a join result

7: 𝑏𝑎𝑠𝑒_𝑟𝑒𝑙𝑠 = 𝐺 .decompose(𝑟 ) ⊲ split join into base relations

8: 𝐺 .deduplicate(𝑏𝑎𝑠𝑒_𝑟𝑒𝑙𝑠) ⊲ remove potential dups

9: else

10: 𝐺 .deduplicate(𝑟 ) ⊲ projection could introduce dups

11: return 𝐺 .relations ⊲ result database

Given an arbitrary join graph, we first check if the join graph
is cyclic (line 2). In that case, we use our folding algorithm (line 3)
to construct an acyclic join graph. Afterward, we can reuse Yan-
nakakis’ algorithm to reduce the relations (line 4). At this point,
a relation can also represent a join result, and the algorithm per-
forms the semi-joins based on the modified join predicates. These
join predicates can now be conjunctions of multiple joins predi-
cates (cf. Figure 6). Finally, we have to break up the joins again and
remove potential duplicates. For this, we iterate over all nodes in
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the join graph (line 5) and check if this node is a fold (line 6). If so,
we decompose this node again (line 7) by projecting each involved
base relation and remove potential duplicates (line 8). In general,
this operation can basically be seen as the inverse of the folding al-
gorithm. We also remove duplicates due to the projection from base
relations (line 10) and finally return the reduced relations (line 11).

Theorem 4.4. The algorithm ResultDBsemi-join (Algorithm 4) is

correct, i.e., we obtain the correct and fully reduced relations.

Proof. Let 𝑄 ∈ Q be a query over a set of relations
𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑛} and 𝑄ST (𝑄, 𝑅) be the single-table evalu-
ation of 𝑄 and its inputs 𝑅 (see Definition 2.1). Further, let
Yannakakisreduce be the reduction phase of Yannakakis’ al-
gorithm depicted in Algorithm 2, let Decomp

(
𝑄ST (𝑄, 𝑅)

)
={

𝜋𝑅1

(
𝑄ST (𝑄, 𝑅)

)
, . . . , 𝜋𝑅𝑛

(
𝑄ST (𝑄, 𝑅)

)}
be the operation that de-

composes a query result into its base relations, and let Decompfolds
analogously split all folds into their base relations.

We have to show that applying Yannakakis’ reduction phase to
an arbitrary join graph yields the same result as performing the de-
composition operation on the single-table result. In Lemma 4.3, we
have already shown that an arbitrary query 𝑄 can be transformed
into an acyclic query 𝑄 ′ with its corresponding set of relations 𝑅′
without changing the query result, i.e., 𝑄ST (𝑄, 𝑅) = 𝑄ST (𝑄 ′, 𝑅′).
If 𝑄 is already acyclic, the folding process is a no-op. Let 𝐽𝐺𝑄 ′ be
the corresponding join graph instantiated with the underlying rela-
tions 𝑅′. Since 𝑄 ′ is acyclic, we can apply Yannakakis’ algorithm.
Therefore, Yannakakisreduce(𝐽𝐺𝑄 ′ ) produces the fully reduced
relations 𝑅′reduced. Since the folds in 𝑅′reduced are fully reduced as
well, applying the Decompfolds operator to those folds yields the
fully reduced base relations in turn. Therefore, we can conclude:

Decomp
(
𝑄ST (𝑄, 𝑅)

)
= Decompfolds

(
Yannakakisreduce (𝐽𝐺𝑄 ′ )

)
□

5 Related Work

SQL Extensions. Throughout the years, various SQL extensions
have been introduced. Regarding single keyword extensions, the
Data Cube [19] and Skyline [9] operator are probably the most well-
known. The Data Cube enables N-dimensional aggregate computa-
tion while the Skyline operator allows for filtering out “interesting”
data points. Our work also introduces a new keyword, enabling the
computation of a result subdatabase instead of a single-table result.
To our knowledge, this is the first work to make this contribution.

Another way of extending SQL is to move away from the tra-
ditional relational data model and to introduce a query language
tailored to semi-structured or unstructured data. SQL++ [32] is a
semi-structured query language of AsterixDB [1] that represents
a superset of the SQL and JSON data model. Extending SQL with
JSON enables the arbitrary nesting and composition of data values.
While this is a valid approach, our proposed extension explicitly
stays in the relational word, keeping schema and relational infor-
mation. Additionally, it is minimally invasive, requiring only the
addition of a single keyword rather than a new query language.

Semi-joins & Yannakakis’ Algorithm. To compute a result data-
base, the fundamental idea is to use semi-joins to reduce all involved

relations. Bernstein et al. [5] already introduce the idea to use semi-
joins to solve relational queries. By “solve relational queries”, they
mean efficiently computing reduced relations using semi-joins and
then computing the final result using these reduced relations. This
algorithm is also well-known as Yannakakis’ [40] algorithm. In
their work, they show that queries with a tree-structured query
graph can be solved using semi-joins. Conversely, queries with
cyclic graphs generally require large semi-join programs or cannot
be solved at all. Both works inspired our algorithmic solution.

Yang et al. [39] recently published another work utilizing Yan-
nakakis’ algorithm. The general idea is to optimize join performance
by reducing the corresponding relations as much as possible before
joining them. However, instead of using semi-joins to filter the
relations, they utilize computationally more efficient Bloom filters.
Their technique is called predicate transfer and can be seen as a
generalization of Bloom joins. Unlike their approach, we cannot use
Bloom filters without further ado due to potential false positives.
While they remove false positives in the final join, we return the
filtered relations directly. We could use such a probabilistic data
structure only if the post-join is always executed on the client.

Bitmaps, Bitvectors, Bitmap Join Indexes, & Bloom Filters. Value
bitmaps [11, 31], bitvector filters [15], bitmap join indexes [2], and
their probabilistic counterparts like bloom filter [7, 24, 33] are use-
ful optimization techniques for read-mostly scenarios. An early
variant of this is the technique described by Graefe [18]. Especially
bitvector filters and bloom filters can be seen as a variant of side-
ways information passing (see paragraph below). Since ResultDB
essentially only filters the base relations of a query, any existing
DBMS already supporting these techniques can directly apply them
to ResultDB queries. A detailed experimental evaluation of the dif-
ferent techniques and trade-offs is beyond the scope (and space
constraints) of this paper, but we believe that it will considerably
improve the performance of ResultDB queries.

Sideways Information Passing & Factorization. The underlying
idea of sideways information passing (SIP) is to optimize query
processing by exchanging information between arbitrary parts in
a query plan. This optimization is often aimed at reducing inter-
mediate (join) results by reducing relations early on. Therefore,
a semi-join reduction [5] is actually a special case of SIP, whose
application is very broad. Shrinivas et al. [35] present how SIP in
the context of materialization strategies can be used to improve the
performance in the Vertica Analytical Database [23]. Neumann and
Weikum [27] show how SIP can be used to speed up index scans at
query runtime in RDF graphs. Another work [41] by Zhu et al. is
able to produce robust query plans in star schemas by making use
of bloom filters, a SIP data structure. While SIP applies a certain
reduction in a specific scenario, we unconditionally reduce all rela-
tions that are part of a query. Furthermore, we explicitly compute
this reduced state of a relation whereas SIP only uses it as a means
to speed up query processing.

Factorized Databases [30] is another concept that tries to mini-
mize intermediate join results. However, in contrast to the afore-
mentioned SIP methods, factorization is essentially a compression
technique for join results that tries to get rid of redundancies. With
that, it also targets the problem of relational information redundan-
cies (cf. Problem 1 in Section 1). In contrast to factorized databases,
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we primarily try to avoid the redundancies in join results instead
of hiding those redundancies using compression techniques.

Tree decompositions. As discussed in Section 4.3, tree decompo-
sitions [34] can be used to transform a cyclic graph into a tree
structure by grouping nodes connected by edges into “bags”, ad-
hering to specific properties. While tree decompositions are useful,
particularly in database theory [4, 8, 10, 17] for efficiently solving
NP-hard problems like evaluating conjunctive queries with bounded
treewidth, they have some practical issues. The main issue with
tree decompositions is that they often result in trees where original
nodes appear in multiple bags, increasing the join effort. To avoid
this, we use a straightforward approach that joins (folds) relations
until the graph is acyclic. This method provides better control over
which relations are joined and allows for easier optimization with
regard to the subsequent reduction phase.

Worst-case optimal joins. A key advantage of our algorithm pre-
sented in Section 4 is that we avoid computing potentially large
intermediate results. Similarly, worst-case optimal joins (WCOJ)
avoid producing large intermediate results by computing multi-way
joins instead of binary joins [28]. However, WCOJ come with some
major downsides. First, they are predominantly useful in contexts
like large graphs with many self-joins [36]. Second, they are mainly
efficient for cyclic queries [38]. Third, and most importantly, ex-
isting and well-known algorithms like the Leapfrog Triejoin [37]
come with impractical requirements such as the existence of or-
dered index structures on their input. Freitag et al. [16] provide an
approach to integrate WCOJ in relational databases without such
hard requirements. While this work makes WCOJ more accessible
outside the database theory community, we argue that Yannakakis’
algorithm is better suited, as we can use it to efficiently compute
multiple result sets while avoiding large intermediate join results.

Data Provenance. There are fascinating relationships of ResultDB
to lineage and provenance. For instance, the seminal work by Cui
et al. [14] introduced query rewrites to track the derivation set

of an output tuple 𝑡 , i.e., all tuples from the input database that
contributed to computing 𝑡 (see Definition 8.2 of Cui et al. [14]).
Consider any SPJ query 𝑄 and reduce its output to a single tuple
by applying filters, resulting in 𝑄𝑡 . Then, the derivation set of 𝑡 is
equal to the ResultDB query of𝑄𝑡 by definition (as long as ResultDB
returns all attributes from all referred input relations)! This is be-
cause we return only those tuples that somehow contribute to at
least one of the tuples in the single-table result. In a way, ResultDB
queries can be seen as multi-tuple derivation set queries.

Similarly, the work by Niu et al. [29] and Arab et al. [3] provides
techniques for optimizing provenance queries. All these techniques
should be revisited to leverage ResultDB style query processing.
However, this goes beyond the scope of this paper.

6 Experiments

Through our experiments, we address the following four research
questions (RQs):
RQ 1 What is the level of data redundancy in the result sets of

a real-world benchmark, and what is the potential data
redundancy in a theoretical scenario? (Section 6.1)

RQ 2 How do the RMs compare, and what is their overhead rela-
tive to the single-table approach? (Section 6.2)

RQ 3 What is the query execution time of our ResultDBsemi-join
compared to the single-table approach? (Section 6.3)

RQ 4 How does the end-to-end runtime of our ResultDB approach
compare to that of the single-table approach, including data
transfer time and post-join time? (Section 6.4)

Setup. All experiments were conducted on an AMD Ryzen
Threadripper 1900X 8-Core processor with 32 GiB main memory.
The underlying operating system is Arch Linux with kernel version
6.8.2.arch2-1 on an x86_64 architecture.

Systems. We integrated our ResultDBsemi-join algorithm
from Section 4 into mutable [21], an open-source relational DBMS
with a compiling query engine [22]. Currently, mutable is an early-
stage research project supporting core functionality like query
execution, different data layouts, and plan enumerators [20]. How-
ever, mutable is still missing some functionality like indexes, multi-
threading, or advanced language features. Due to the lack of certain
features, we decided to use PostgreSQL for evaluating the rewrite
methods presented in Section 3. In particular, we use PostgreSQL
16.2 and measure the client-side runtime using the \timing com-
mand of the accompanying interactive terminal psql. Furthermore,
we increase the shared_buffers size to 16 GiB and the work_mem

size to 1 GiB based on empirical analysis, as these parameters sig-
nificantly impact performance, and use default settings otherwise.

Datasets & Workloads. To evaluate our algorithms, we use the
Join Order Benchmark (JOB) [25], which is based on the real-world
IMDb dataset and exclusively contains SPJ queries with a vari-
able number of joins. Some queries were slightly modified for use
in mutable due to missing keywords like IN or BETWEEN, without
changing their semantics.

Query Types. We distinguish the following query types:

(1) Single Table (ST): refers to the SQL query that produces a
potentially denormalized single-table join result and serves as
a baseline (cf. Definition 2.1).

(2) ResultDB without post-join information (RDB): refers to the
query that returns only the individual relations that are part
of the SELECT clause of the original query, i.e., we exclusively
project those attributes (cf. Definition 2.2).

(3) ResultDB with post-join information (RDBRP): additionally
projects the attributes necessary the post-join, effectively cre-
ating a relationship-preserving query (cf. Definition 2.3).

6.1 Result Set Sizes

In this section, we first have a closer look at the result set sizes
of several JOB queries. Afterward, we will examine a star schema
dataset to illustrate the potential extent of data redundancy. We
investigate the result set sizes for the three different approaches ST,
RDB, and RDBRP. We compute the size of a result set by adding up
the individual sizes of all attributes that are returned. The size of
an attribute is calculated by multiplying the datatype size by the
number of tuples for numeric attributes, or by summing the actual
string length of each tuple for character attributes.
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Figure 7: Theoretical star schema result set sizes.

JOB. Table 1 shows the result set sizes for a subset of the JOB
queries in kilobytes (KiB), as well as the compression ratio defined as
size(Single Table)/size(subdatabase). Due to space constraints, we limit
ourselves to those queries that we investigate in more detail later
on in Section 6.4. Furthermore, the queries that we left out have
mostly relatively small result set sizes, typically just a few kilobytes,
and also exhibit small compression ratios. This is due to the fact
that those JOB queries often return a very small number of rows,
project a limited set of attributes, or both. In addition, there are
very few redundancies in the result sets. Note that, the result set
sizes of some queries like 4a for RDBRP (19.07 KiB > 18.91 KiB)
are even larger because they need to project additional attributes.
The queries that stand out are 16b with a very large result set size
of roughly 130, 376 KiB (≈ 127 MiB) and 11c with a compression
ratio of 1410. In general, most queries that return a subdatabase,
regardless of whether they are relationship-preserving, tend to
produce significantly smaller result sets. This, in turn, leads to high
compression ratios due to substantial redundancy in the output.

Star Schema. To illustrate the extent to which data redundancy
can occur, let us consider a typical star schema consisting of a fact
table and several dimension tables. In the worst case, each tuple
from a specific dimension table joins with all tuples from the other
dimension tables, i.e., the fact table contains the Cartesian product
of the dimension tables. This results in maximum redundancy. As-
sume we query the star schema by joining all relations, selecting all
attributes, and scaling the result set size using filters with varying
selectivity across all dimension tables. Figure 7 shows the result
set sizes of this dataset and workload. Note that, in this case, RDB
only projects the payload of the dimension tables and the fact table,
meaning that no primary or foreign keys are returned. In compari-
son, both Single Table and RDBRP include this key information.

In general, the result set size for all three approaches increases
quadratically with respect to the selectivity due to the character-
istics of the fact table. However, the increase of the Single Table
approach is much steeper since the data of all dimension tables
gets repeated. The higher the selectivity value, the more tuples
from the fact table participate in the join result and with that, more
data from the dimension tables gets duplicated. As a result, the gap
between Single Table and RDBRP widens as the selectivity value
increases. This redundancy is depicted in gray. Clearly, the gap

widens significantly the more dimension tables we have and the
larger the tuples in the dimension tables are.

Regarding RQ 1, these results demonstrate that denormalization
through joins, whether in JOB queries or in a theoretical star schema
workload, can introduce a significant amount of data redundancy.
This motivates computing and returning a subdatabase instead of a
potentially denormalized single-table result.

6.2 Rewrite Methods

In this section, we investigate the performance of our rewrite meth-
ods introduced in Section 3 with respect to the end-to-end client-
side runtime in PostgreSQL. For each JOB query template (1–33),
we show the results for one specific instantiation (a–d), selected
based on whether the query is supported by mutable or chosen at
random otherwise. We first compare the performance of the differ-
ent rewrite methods against each other. Afterward, we examine the
overhead or potential speed-up the rewrite methods introduce in
comparison to the single-table execution. It is crucial to approach
this comparison with caution, as the methods yield different results;
it primarily aims to provide an intuition of the difference in query
execution time. For this experiment, we use the RDB approach,
i.e., we use the original query and do not add additional attributes
for the post-join. To avoid data transfer overhead, we use COUNT(*)
to aggregate the results. Since every rewrite method might consist
of multiple queries, we summarize the measured runtime of the
individual queries to obtain a single query execution time. For ex-
ample, for RM 2 we first measure the time to create the MV and
then the time to execute each SELECT DISTINCT query. We report
the median query execution time of five runs.

Figure 8 shows the query execution time on a logarithmic scale
for JOB. In general, it is evident that the rewrite methods exhibit
significant differences in performance. No method is consistently
better or worse than the others. The dynamic rewrites RM 1 and
RM 3 exhibit very often a similar performance. While RM 1 is rather
consistent in comparison to the other methods, RM 3 contains
some noticeable outliers. For example, for 7a, 21a, 27a, and 30c
the query execution time of RM 3 is up to an order of magnitude
slower. However, RM 3 also has some positive applications, e.g., for
11c or 20b, where it outperforms the other RMs by far. Looking at
the physical execution plan in PostgreSQL, we can see that RM 3
uses a different join order and essentially computes a semi-join
between the outer relation and the subquery through the use of
the IN keyword. In comparison to the other rewrites, RM 1 and
RM 3 perform best if there is only a single relation referenced in the
projections of the query, which is the case for 2a, 3c, 5c, 11c, 17a,
and 20b. As soon as there are two or more relations, they fall behind.
The materialization rewrites RM 2 and RM 4 exhibit very similar
query execution times as well, with RM 4 being faster in almost all
cases. This is most likely due to the fact that RM 4 simply requires
less data to be materialized since it only materializes the join index
instead of the complete join result (all required attributes).

Table 2 shows the overhead in percent for each query using the
best performing rewrite method, comparing it to the single-table
query execution time as baseline. A negative overhead represents
an improvement. Except for a few queries like 15d (43.2%), and
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Table 1: JOB result set sizes in KiB (compression ratio).

Method 3c 4a 9c 11c 16b

ST 166.16 (1.0) 18.91 (1.0) 497.56 (1.0) 267.85 (1.0) 130376.72 (1.0)
RDBRP 101.66 (1.6) 19.07 (1.0) 57.07 (8.7) 0.19 (1409.7) 7884.80 (16.5)
RDB 101.66 (1.6) 13.15 (1.4) 35.29 (14.1) 0.19 (1409.7) 3821.99 (34.1)
Method 18c 22c 25b 28c 33c

ST 686.85 (1.0) 783.46 (1.0) 0.25 (1.0) 310.66 (1.0) 9.32 (1.0)
RDBRP 627.69 (1.1) 122.68 (6.4) 0.18 (1.4) 53.32 (5.8) 1.37 (6.8)
RDB 254.96 (2.7) 33.53 (23.4) 0.10 (2.5) 15.47 (20.1) 0.76 (12.3)

Table 2: Overhead of the best rewrite method compared to the single-table execution time for the IMDb dataset.

JOB Query 1b 2a 3c 4a 5c 6a 7a 8a 9c 10c 11c

Overhead 10.7% 0.8% 1.8% 12.9% -2.0% 19.0% 0.6% 0.9% 23.4% -0.6% -84.1%
Best RM RM 4 RM 3 RM 1 RM 4 RM 3 RM 4 RM 4 RM 4 RM 4 RM 4 RM 3
JOB Query 12a 13b 14a 15d 16b 17a 18c 19a 20b 21a 22c

Overhead 3.0% 1.8% -1.2% 43.2% 48.6% -53.5% 4.7% 2.6% -90.5% -1.7% 3.1%
Best RM RM 4 RM 4 RM 4 RM 4 RM 4 RM 3 RM 2 RM 4 RM 3 RM 4 RM 4
JOB Query 23a 24a 25b 26a 27a 28c 29a 30c 31a 32a 33c

Overhead -4.9% 0.9% -0.0% -75.8% 6.7% 1.2% -0.0% 4.6% -0.1% 9.5% 12.2%
Best RM RM 4 RM 4 RM 4 RM 2 RM 4 RM 4 RM 4 RM 4 RM 4 RM 4 RM 4

1b 2a 3c 4a 5c 6a 7a 8a 9c 10c 11c 12a 13b 14a 15d 16b 17a 18c 19a 20b 21a 22c 23a 24a 25b 26a 27a 28c 29a 30c 31a 32a 33c
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Figure 8: Query execution time of the rewrite methods in PostgreSQL for the IMDb dataset.

16b (48.6%), at least one of the rewrite methods performs compara-
bly to the single-table execution. For example, q2a and q31a have
0.8% and −0.1% overhead, respectively. However, there are also a
few queries like 11c (−84.1%) and 20b (−90.5%) where our rewrite
methods significantly outperform the single-table execution. In
those cases, RM 3 is able to successfully apply a semi-join. This
comparison underscores the small performance overhead of our
approach, which is occasionally even faster.

Regarding RQ 2, we conclude that query execution times vary
significantly across different rewrite methods depending on the
type of query, with occasional outliers. However, most importantly,
the best rewrite method often introduces only a marginal overhead
over the single-table execution and sometimes even outperforms
it. As a general rule, we recommend using RM 3 in case there is
just a single output relation and RM 4 otherwise, as it is the best
performing rewrite method in 75% of the cases.

6.3 ResultDBsemi-join Algorithm

In this section, we evaluate the performance of our
ResultDBsemi-join algorithm described in Section 4 integrated into
mutable. Specifically, we compare the query execution time of our
implementation with the single-table execution. To ensure a fair
comparison despite the differing results of both approaches, we
implemented a new logical/physical operator called Decompose.
This operator is placed on top of the standard projection operator
at the root of a plan. Instead of returning a single-table result
set, it provides the ResultDB output by splitting the result into
individual relations and removing duplicates. We briefly compare
the ResultDB performance, in particular the post-join times, to the
unchanged baseline in Section 6.4.

We implemented Algorithm 4 with one additional optimization.
Once we fully reduced all relations that are part of the projections,
we stop early and return the result, as there is no need to always
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Figure 9: Query execution time of ResultDBsemi-join in

mutable for the IMDb dataset. The zoom-in highlights the

negligible overhead of the decompose operation.

reduce all relations. In addition, we minimize data transfer by re-
turning only the number of qualifying rows instead of the complete
result. As for the rewrite methods, we use the RDB approach with-
out adding attributes for the post-join. Furthermore, we inject the
real cardinalities of filtered relations and join results to avoid neg-
ative effects on the query execution time due to poor cardinality
estimation. Note that, mutable’s query engine is currently limited
to 16 GiB and does not support varying-length character data types.
To run a meaningful amount of JOB queries, we manually limit
the corresponding attributes in the IMDb schema to a fixed length,
determined empirically. Nevertheless, some queries still exhaust
this memory limit and therefore, we were not able to include all
queries. We report the median query execution time of five runs.

Figure 9 compares the query execution time of Single Table plus
Decompose as a stacked bar plot with ResultDBsemi-join for several
JOB queries. The key observation is that ResultDB is consistently
slightly slower than the Single Table plus Decompose approach.
Notably, due to small result set sizes, the Decompose step introduces
hardly any overhead, making it nearly imperceptible in our plot.
For instance, as depicted in the zoom-in, the decomposition for
18c requires roughly just 10 ms, which is just a tiny fraction of
the overall execution time. The same applies to all other queries
in this experiment. Note that, preliminary experiments show that
the Decompose step can be quite time-consuming for sufficiently
large data sets. In general, for most queries the overhead introduced
by our prototype implementation is still manageable. For example,
for q5c, ResultDBsemi-join has a runtime of 2396 ms, compared to
1821 ms for the single-table execution. However, there are also a
few outliers were ResultDBsemi-join performs considerably worse
like for 26a or 33c.

Regarding RQ 3, we conclude that the current implementation
of the ResultDBsemi-join algorithm does not yet match the single-
table execution times, even when factoring in the decomposition.
However, despite our implementation lacking many optimization
opportunities, such as improved folding or an optimized semi-join
reduction order, these experiments yield promising results. Further-
more, the very small Decompose overhead essentially provides us
with the possibility to compute a result subdatabase very efficiently.

6.4 Runtime with Data Transfer & Post-join

In this section, we compare the rewrite methods and our
ResultDBsemi-join algorithm to the single-table execution in terms
of end-to-end runtime, including query execution, data transfer, and
post-join time. For this experiment, we use RDBRP queries to be
able to compute the post-join after transferring the data. Due to
space constraints, we focus on a subset of the JOB queries, aiming
to cover a diverse range of query types. The data transfer rate (DTR)
– the time required to transfer a query result – plays a critical role
in overall performance. For the following experiments, we assume
a DTR of 100 Mbps, a speed commonly regarded as reliable for
general use. While data centers and cloud-based networks often
achieve DTRs in the tens or even hundreds of gigabits per second,
these environments typically handle significantly larger datasets.
As a result, our chosen DTR provides a meaningful basis for evalu-
ating performance in more conventional settings. To measure the
post-join times, we compute and materialize the reduced relations
and use the respective system, PostgreSQL or mutable, to compute
the final join result.

Rewrite Methods. Table 3 shows the end-to-end performance of
the best rewrite method (RM) in PostgreSQL compared to the
single-table (ST) approach. In general, for queries with larger result
set sizes and high compression ratios (e.g. 9c, 16b, and 22c), the
transfer time is noticeably higher for the single-table result than for
the result subdatabase. For example, transferring the single-table
result of 16b takes approximately 10, 186 ms, whereas transferring
the result subdatabase requires only around 616 ms. Furthermore,
the post-join times are almost negligible in the overall runtime and
in comparison to the single-table execution. In particular, many
JOB queries have post-join times of just a few milliseconds, which
typically represents only a small fraction of the original single-table
query execution time. However, some queries, such as 16b, have
high post-join times. In general, most queries exhibit similar perfor-
mance across both approaches due to the small overhead introduced
by the data transfer and the post-join. Note that, the query execution
times are slightly higher than the ones reported in Figure 8 because
we compute a relationship-preserving subdatabase. However, there
are cases where the high data transfer time has a significant impact.
For instance, the time for computing a result subdatabase for 16b is
almost twice as high as computing the single-table result, with an
execution time of 10, 959 ms compared to 21, 560 ms. However, due
to the reduced transfer time of approximately 616 ms – compared
to nearly 10, 186 ms – and the small post-join time of 314 ms, the
rewrite method almost performs comparably to the single-table
execution in terms of overall execution time with 21, 145 ms versus
22, 490 ms.

ResultDBsemi-join. Because mutable’s query execution is signif-
icantly faster compared to PostgreSQL, the post-join times are
also considerably reduced. For most JOB queries in this experiment
(excluding 16b as it does not run in mutable), the post-join times
consistently fall below 1 ms, with the highest one being 4.65 ms for
18c. The transfer times are the same as the ones in Table 3. As a
result, the overall query execution times are similar or higher (due
to computing RDBRP) to those in Figure 9, leading to the decision
to omit the corresponding visualization due to space constraints.
Regarding RQ 4, we conclude that in terms of end-to-end runtime,
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Table 3: End-to-end performance of the best rewrite method (RM) compared to the Single Table (ST) execution on JOB.

JOB Query 3c 4a 9c 11c 16b

Approach ST RM ST RM ST RM ST RM ST RM

Query Execution [ms] 226.48 367.33 101.97 173.89 505.92 656.25 1098.98 195.59 10959.35 21559.84
Data Transfer [ms] 12.98 7.94 1.48 1.49 38.87 4.46 20.93 0.01 10185.68 616.00
Post-join [ms] - 4.93 - 5.60 - 13.87 - 0.78 - 314.06∑

[ms] 239.46 380.20 103.44 180.98 544.79 674.58 1119.90 196.38 21145.03 22489.90
JOB Query 18c 22c 25b 28c 33c

Approach ST RM ST RM ST RM ST RM ST RM

Query Execution [ms] 2783.83 3217.37 2219.48 2356.31 250.47 360.65 2792.73 2886.34 90.56 123.34
Data Transfer [ms] 53.66 49.04 61.21 9.58 0.02 0.01 24.27 4.17 0.73 0.11
Post-join [ms] - 35.67 - 6.16 - 2.45 - 6.83 - 11.22∑

[ms] 2837.49 3302.08 2280.69 2372.05 250.49 363.12 2817.00 2897.34 91.29 134.66

ResultDB approaches the single-table execution and that fast data
transfer times can have a significant impact as for 16b.

7 Future Work

In the following, we suggest possible topics for further investigation
that were beyond the scope of this initial work.
(1) Query Optimization. As discussed throughout this work, there

is significant optimization potential yet to be explored, which
our research group is actively investigating. We are working on
several different algorithms that address the Root Node Enumer-

ation Problem and the Tree Folding Enumeration Problem.
(2) Data Transformations. This initial paper focuses on the data

retrieval aspect of SQL, i.e., SPJ queries. However, we also have
ongoing research regarding data transformation. In this context,
we plan to extend our definitions in Section 2 accordingly. We en-
vision to integrate arbitrary data transformation alongside data
retrieval, including grouping on different criteria on different
relations at the same time. Consequently, our approach natu-
rally supports true grouping sets semantics without shoehorning
the different results into the same single output table.

(3) Subqueries. For non-correlated subqueries, we already ex-
plored the idea to naturally extend table-valued subqueries to
subdatabase-valued subqueries. Instead of a single-table result,
the outer query receives multiple reduced tables. For correlated
subqueries, we plan to explore rewrite techniques similar to [26]
and investigate how this affects query optimization.

(4) Views. In contrast to traditional views, a subdatabase view
offers a view on a set of relations rather than a single relation.
Similar to correlated subqueries, we want to investigate which
optimization potential querying a subdatabase view exhibits.

(5) Subdatabase Snapshot. In this paper, returning a subdatabase
is restricted to the relevant tuples of a subset of the tables. How-
ever, a result subdatabase could also include metadata, statistics,
indexes, or the query execution plan for performing the post-
join. For instance, the query execution plan could be sent in
WebAssembly and executed within a sandbox by the client, elim-
inating the need for users to perform the post-join manually.

(6) API Integration. Current database APIs like JDBC drivers,
expect a single-table result, i.e., cursor of tuples, to be returned.
We propose a minimally invasive extension, enabling to return a
set of cursors, with each cursor corresponding to a distinct result
set. Further, we aim to explore the feasibility of a cursor that

iterates over the join co-groups of multiple result sets, reducing
the user’s burden of performing the post-join on the client.

8 Conclusion

SQL comes with the very hard limitation that each query result is
shoehorned into a single table. In this work, we initially discuss the
fundamental problems, data redundancy and information loss, that
stem from this limitation. To address these problems, we propose
to extend the SQL SELECT clause by a single keyword: RESULTDB.
This extension enables us to return a subdatabase – a subset of
tables, each containing only the tuples that contribute to the overall
query result – instead of a single, potentially denormalized, table.
Furthermore, we introduce a formalization of our SQL extension
showing that it is well-defined and has clear semantics.

We present two classes of approaches to support our new func-
tionality. First, we propose four SQL-based rewrite methods al-
lowing us to transform traditional SQL queries into semantically
equivalent queries returning a result subdatabase. Second, we pro-
pose an efficient algorithm that can be integrated directly into a
DBMS. We also show promising experimental results. Computing
individual result sets can significantly reduce the result set size.
Further, our RMs and algorithm introduce only minimal overhead
and can sometimes even outperform the single-table execution.

Limitations. As already pointed out in Section 7, this work opens
the book for a lot of exciting follow-up works that should investi-
gate some of its limitations. Our experiments show that our native
algorithm is slower than the single-table execution. However, we
also showed that we can use our decompose operator, a simple
extension to any traditional query execution plan, to efficiently
compute a result subdatabase. Although ResultDB is slower, the
comparison is not entirely fair. Single-table queries benefit from
50 years of extensive research, while the application of Yannakakis’
algorithm in real systems experienced little optimization effort so
far. However, we are confident that future work can address many
of these challenges. In addition, this work is currently limited to SPJ
queries. However, we already have ongoing research that tackles
data transformation like aggregation and arithmetic expressions.
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